

Version: 3.0

Product Name:

Anycubic ABS

Anycubic ABS is a widely used consumer-grade filament that offers several advantages. It can withstand temperatures up to 85°C and is known for its high toughness and impressive printing success rates. Additionally, it features enhanced anti-warping properties, which help prevent corner lifting, even when printing models with a size of 220mm x 220mm.

Physical Properties

Property	Testing Method	Unit	Typical Value
Density/ (g/cm³)	ISO 1183,at 23°C	g/cm³	1.05
Melt Index/ (g/10min)	ISO 1133	g/10min	32.1±0.63
Moisture Content	ISO 787-2	%	0.25

Mechanical Properties

Property	Testing Method	Unit	Typical Value
Tensile Strength / MPa (X-Y)	ISO 527	МРа	34
Tensile Strength / MPa (Z)	130 327		22
Young's Modulus / MPa (X-Y)	ISO 527	МРа	2200
Young's Modulus / MPa (Z)	150 527		1
Elongation at Break / % (X-Y)	ISO 527	%	11
Elongation at Break / % (Z)	150 527		1
Bending Strength / MPa (X-Y)	ISO 178	МРа	63
Bending Strength / MPa (Z)	130 176		1
Bending Modulus / MPa (X-Y)	ISO 178	МРа	2200
Bending Modulus / MPa (Z)	130 176		/
Izod Impact Strength (kJ/m²) (X-Y)		kJ/m²	40
Izod Impact Strength (kJ/m²) (Z)	ISO 179		/

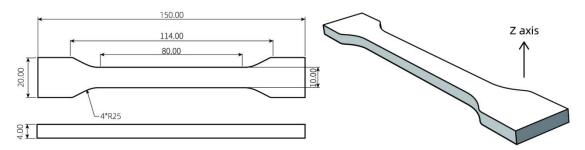
^{*}All data are based on printed test samples. '(X-Y)' and '(Z)' indicate different testing orientations (refer to the direction schematic).

Version: 3.0

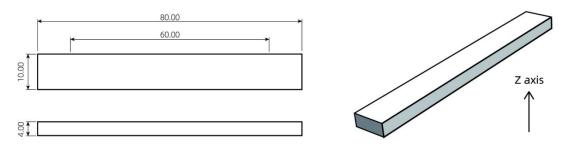
Thermal Performance

Property	Testing Method	Unit	Typical Value
Glass Transition Temperature	ISO 11357-1, 10℃/min	$^{\circ}$	105
Melting Temperature	ISO 11357-1, 10℃/min	$^{\circ}\!\mathbb{C}$	/
Crystallization Temperature	ISO 11357-1, 10℃/min	$^{\circ}$ C	/
Vicat Softening Temperature (VST)	ISO 306, 10N	$^{\circ}\!\mathbb{C}$	95
Heat Deflection Temperature (HDT)	ISO 75-2, 1.8 MPa	${\mathbb C}$	/
Heat Deflection Temperature (HDT)	ISO 75-2, 0.45MPa	${\mathbb C}$	85

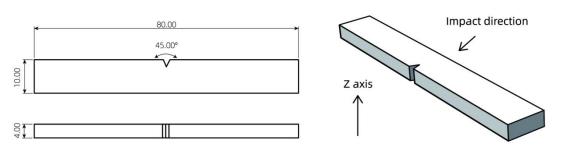
Recommended Printing Parameters


*Based on a 0.4mm nozzle, printing conditions may vary with different nozzle diameters

Parameter	Recommended Value	
Nozzle Temperature	240-280	
Bed Temperature	80-100	
Dry Environment	70-80℃, 8-12h	
Printing Speed	50-150	
Extrusion Multiplier	0.95	
Max Volumetric Flow Rate	15	
Fan Speed	80%	
Cooling Time	3	
Minimum printing Speed	20	
Raft Separation Distance	0.8	
Retraction Speed	40	



Version: 3.0


TENSILE TESTING SPECIMEN

FLEXURAL TESTING SPECIMEN

IMPACT TESTING SPECIMEN

Disclaimer:

The values shown in this chart are for comparison purposes only and are not appropriate for design specifications or quality assurance. Variations may arise due to printing conditions. The end-use performance of printed parts depends on materials, design, environmental conditions, and printing conditions. Please note that product specifications are subject to change without notice.

Each user is responsible for determining the safety, legality, technical suitability, and proper disposal or recycling practices for Anycubic materials in their intended applications. Anycubic makes no warranties of any kind regarding the suitability of these materials for any specific use or application unless explicitly stated otherwise. Anycubic shall not be held liable for any damage, injury, or loss that results from the use of Anycubic materials in any application.