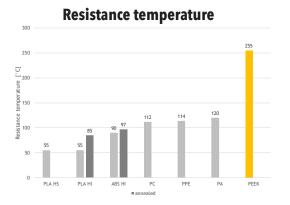
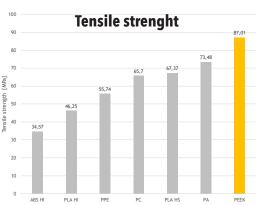


Polyetheretherketone (PEEK) is a high-temperature-resistant thermoplastic and belongs to the group of polyaryletherketones. In addition to its high temperature resistance, it is characterized by good mechanical properties, high chemical resistance, and low wear during friction. PEEK is a flame-retardant polymer.

MATERIAL DATA		PRINTED
Resistance temperature		255°C
Tensile strength	ISO 527	87 N/mm ²
Elongation at break	ISO 527	8,3 %
Impact strength	ISO 179/1eU	53 kJ/m²
MATERIAL DATA		INJECTION MOLDING
Resistance temperature		255°C
Tensile strength	ISO 527	100 N/mm ²
Elongation at break	ISO 527	40 %
Impact strength	ISO 179/1eA	ohne Bruch
Flexural Modulus	ISO 178	4200 MPa
Melting point	ISO 11357	343°C
Glass Transition	ISO 11357	143°C
HDT	ISO 75-f 1,8MPa	152°C
MFI	ISO1133 380°C 5kg	20 g 10min ^{.1}
Density	ISO1183	1,26 - 1,30 g/cm ³
Shore D Hardness	ISO 868 23°C	85
Electrical Data		on request

Processing note: Because of the high melting point, PEEK can be processed in dedicated printers only. There are nozzle temperatures $> 390^{\circ}$ C, a closed pressure chamber (optimally heated) and a heated printing plate $> 130^{\circ}$ C necessary. The typical printing speeds is between 5 mm/s and 10 mm/s.


Disclaimer: The information provided in this document has been prepared to the best of our knowledge and belief, but conduces only as non-binding reference. Check if the selected material can be used for your application. For processing and 3D printing, pay attention to our safety data sheets. W2 Polymer GmbH is not liable for damages, injuries or losses caused by the use of our materials in your application. **Test values (printed):** The stated values are guideline values, no binding minimum values. Please note that the 3D printing process can significantly influence the properties. Furthermore, geometry and environmental influences have a major impact on end use performance. Printed on a Creatbot F160 with Simplify3D in the xy plane. If you need more information, help or support, please contact us at: support@w2polymer.com



Material comparison

The resistance temperature is a value for the maximum operating temperature. Note, the closer you get to this value, the more the material properties change. When working at the limit we recommend checking exactly, if the material is suitable for the use case.

Impact strenght

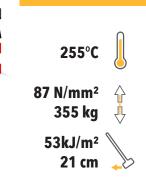
The tensile strength is a value how much I can pull on the material. 1 MPa corresponds to 1 N/mm² (Force per surface). 1 kg corresponds to 9,81N. The tensile strength specimen has an cross sectional area of 40mm². In other words, a tensile strength of 87.01 MPa means, that a tensile specimen with a cross-section of 40mm² will break at a tensile load of 355kg.

ohne Bruch

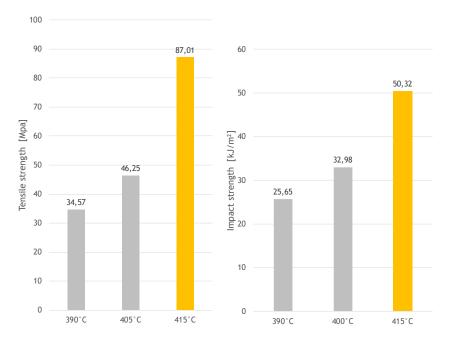
The impact resistance is a measure of how well the material can absorb shock and impact energy. kJ / m^2 (energy per cross-sectional area). An impact strength of 50.32 kJ / m^2 corresponds to the energy of a 1 kg heavy weight from a fall height of 21 cm, which is necessary to break a beat sample printed in PEEK with a cross section of 40mm².

Disclaimer: The information provided in this document has been prepared to the best of our knowledge and belief, but conduces only as non-binding reference. Check if the selected material can be used for your application. For processing and 3D printing, pay attention to our safety data sheets. W2 Polymer GmbH is not liable for damages, injuries or losses caused by the use of our materials in your application. **Test values (printed)**: The stated values are guideline values, no binding minimum values. Please note that the 3D printing process can significantly influence the properties. Furthermore, geometry and environmental influences have a major impact on end use performance. Printed on a Creatbot F160 with Simplify3D in the xy plane. If you need more information, help or support, please contact us at: support@w2polymer.com

PLA HS


ABS HI

PLA H


60

W2 Polymer GmbH | A-8130 Frohnleiten | © W2 Polymer GmbH

Printing temperature analysis

The printing temperatures have a major influence on the material characteristics. For high tensile strength and high impact strength, nozzle temperatures of about 415° C are required. The specimens were printed with simplify3D on a Creatbot F160 printer with 130° C heating bed and a closed printing chamber at the xy plane.

Food Contact:

Disclaimer: The information provided in this document has been prepared to the best of our knowledge and belief, but conduces only as non-binding reference. Check if the selected material can be used for your application. For processing and 3D printing, pay attention to our safety data sheets. W2 Polymer GmbH is not liable for damages, injuries or losses caused by the use of our materials in your application. **Test values (printed)**: The stated values are guideline values, no binding minimum values. Please note that the 3D printing process can significantly influence the properties. Furthermore, geometry and environmental influences have a major impact on end use performance. Printed on a Creatbot F160 with Simplify3D in the xy plane. If you need more information, help or support, please contact us at: support@w2polymer.com

