

78,66 N/mm² 321 kg

50,15 kJ/m²

High Performance Filament

Polycarbonate (PC) is an amorphous thermoplastic polymer. High strength, impact resistance and temperature resistance characterize PC. PC is a good electrical insulator. For example, PC is used for CDs, DVDs and Blu-ray Discs.

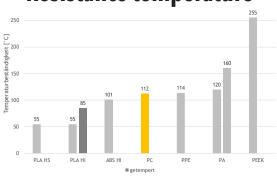
MATERIAL DATA		PRINTED
Resistance temperature		112°C
Tensile strength	ISO 527	78,66 N/mm ²
Elongation at break	ISO 527	8,33 %
Impact strength	ISO 179/1eU	50,15 kJ/m ²
MATERIAL DATA		INJECTION MOLDING
Resistance temperature		112°C
Resistance temperature Tensile strength	ISO 527	112°C 90 N/mm²
	ISO 527 ISO 527	
Tensile strength		90 N/mm ²
Tensile strength Elongation at break	ISO 527	90 N/mm ² 5 %
Tensile strength Elongation at break Impact strength	ISO 527 ISO 179/1eA	90 N/mm ² 5 % 220 kJ/m ²

Processing note: PC is one of the materials difficulty to print. The printing temperatures has to be over 280 ° C, a heated bed > 80 ° C and a special printing surfaces (for example Buildtak) are necessary. From 100° C heated bed, it can be printed on a pure glass surface depending on the geometry.

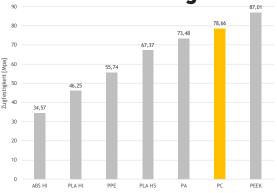
Disclaimer: The information provided in this document has been prepared to the best of our knowledge and belief, but conduces only as non-binding reference. Check if the selected material can be used for your application. For processing and 3D printing, pay attention to our safety data sheets. W2 Polymer GmbH is not liable for damages, injuries or losses caused by the use of our materials in your application.

Test values (printed): The stated values are guideline values, no binding minimum values. Please note that the 3D printing process can significantly influence the properties. Furthermore, geometry and environmental influences have a major impact on end use performance. Printed on a Creatbot F160 with Simplify3D in the xy plane. If you need more information, help or support, please contact us at: support@w2polymer.com

78,66 N/mm² 321 kg

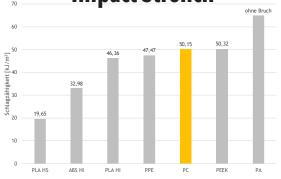

50,15 kJ/m² 20 cm

High Performance Filament


Material comparison

Resistance temperature

The resistance temperature is a value for the maximum operating temperature. Note, the closer you get to this value, the more the material properties change. When working at the limit we recommend checking exactly, if the material is suitable for the use


Tensile Strenght

The tensile strength is a value how much I can pull on the material. 1 MPa corresponds to 1 N/mm² (Force per surface). 1 kg corresponds to 9,81N. The tensile strength specimen has an cross sectional area of 40mm². In other words, a tensile strength of 78,66 MPa means, that a tensile specimen with a cross-section of 40mm² will break at a tensile load of 321 kg.

Impact Strench

The impact resistance is a measure of how well the material can absorb shock and impact energy, kJ/m² (energy per cross-sectional area). An impact strength of 50.15 kJ / m² corresponds to the energy of a 1 kg heavy weight from a fall height of 20 cm, which is necessary to break a beat sample printed in PEEK with a cross section of 40mm².

Disclaimer: The information provided in this document has been prepared to the best of our knowledge and belief, but conduces only as non-binding reference. Check if the selected material can be used for your application. For processing and 3D printing, pay attention to our safety data sheets. W2 Polymer GmbH is not liable for damages, injuries or losses caused by the use of our materials in your application. **Test values (printed):** The stated values are guideline values, no binding minimum values. Please note that the 3D printing process can significantly influence the properties. Furthermore, geometry and environmental influences have a major impact on end use performance. Printed on a Creatbot F160 with Simplify3D in the xy plane. If you need more information, help or support, please contact us at: support@w2polymer.com

